

## COMBINATORIAL ANALYSIS

PROBLEM SET 2 SOLUTIONS (MIT, FALL 2021)

**Problem 1.** *Find an explicit simple formula for the number of compositions of  $2n$  whose largest part is  $n$ .*

*Proof.* First, note that there is exactly 1 composition of  $2n$  into exactly 2 parts whose largest part is  $n$ , namely  $(n, n)$ . We now count the number of compositions of size greater than 2.

It is known from lecture that the number of  $k$ -compositions of  $n$  is  $\binom{n-1}{k-1}$ . Further, if  $k > 2$ , then at most 1 element can equal  $n$  and the remaining elements sum to  $n$ . Therefore, a valid  $k$ -composition of  $2n$  whose largest part is  $n$  has  $k$  spots to place  $n$  and  $\binom{n-1}{k-2}$  ways to choose the other elements. Summing this over all values of  $k$  from 3 to  $n + 1$  gives:

$$\sum_{k=3}^{n+1} k \binom{n-1}{k-2} = \sum_{k=1}^{n-1} \left( k \binom{n-1}{k} + 2 \binom{n-1}{k} \right) = (n-1)2^{n-2} + 2(2^{n-1} - 1) = (n+3)2^{n-2} - 2.$$

Note that the identity  $\sum_{k=1}^{n-1} k \binom{n-1}{k} = (n-1)2^{n-2}$  comes from the argument that both sides count the number of ways to pick a president on a committee of arbitrary size from  $n-1$  people. Adding in the 1 composition of size 2 gives an answer of  $(n+3)2^{n-2} - 1$ .  $\square$

**Problem 2.** *Let  $F(n)$  be the number of partitions of  $[n]$  that do not contain any block of size 1. Prove combinatorially that  $B(n) = F(n) + F(n+1)$ , where  $B(n)$  is the  $n$ -th Bell number.*

*Proof.* First, it is known that  $B(n)$  counts the number of ways to partition a set of exactly  $n$  elements. Therefore,  $B(n) - F(n)$  counts the number of partitions of  $[n]$  that contain at least 1 block of size 1. We now seek to form a bijection between the number of partitions of  $[n+1]$  containing no blocks of size 1 and the partitions of  $[n]$  that contain at least 1 block of size 1. This will evidently show that  $F(n+1) = B(n) - F(n)$ .

For each  $n \in \mathbb{N}$ , let  $X_n$  be the set of partitions of  $[n]$  that have no blocks of size 1 and  $Y_n$  be the set of partitions of  $[n]$  that have at least 1 block of size 1. Define a function  $f : X_{n+1} \rightarrow Y_n$  as follows. Consider an element  $x \in X_{n+1}$ , and suppose  $x$  represents the partition  $a_1 \cup a_2 \cup \dots \cup a_k$ . It is known that  $|a_i| > 1 \forall i$ . Without loss of generality, the element  $n+1$  is in set  $a_1$ . Suppose that  $a_1 = \{r_1, r_2, \dots, r_\ell, n+1\}$ , and consider the partition  $y = \{r_1\} \cup \{r_2\} \cup \dots \cup \{r_\ell\} \cup a_2 \cup \dots \cup a_k$ . This is a valid partition of  $[n]$  with at least 1 block of size 1 since  $\ell \geq 1$ . Therefore  $y \in Y_n$  and is unique to each  $x$ .

For the reverse direction, take  $f^{-1} : Y_n \rightarrow X_{n+1}$ . Let  $y \in Y_n$  so that the elements in a block by themselves are  $r_1, r_2, \dots, r_\ell$ . If  $y = \{r_1\} \cup \{r_2\} \cup \dots \cup \{r_\ell\} \cup a_1 \cup a_2 \cup \dots \cup a_k$ , then the partition  $a_1 \cup a_2 \cup \dots \cup a_k \cup \{r_1, \dots, r_\ell, n+1\}$  is clearly a valid partition in  $X_{n+1}$  and uniquely defined. Therefore  $f$  is bijective and we are done.  $\square$

**Problem 3.** *For each  $n \in \mathbb{N}$ , prove that the number  $p_{\text{odd}}$  of partitions of  $n$  into odd parts equals the number  $q(n)$  of partitions of  $n$  into distinct parts.*

*Proof.* We proceed via generating functions. Let  $a_n$  be the number of partitions of  $n$  into distinct parts and suppose  $A(x) = \sum_{i=0}^{\infty} a_i x^i$  is the generating function for  $a_n$ . As an integer may appear at most once in a partition of  $n$ ,  $A(x)$  must be composed of only factors in the form  $(1 + x^k)$  for all positive integers  $k$ . Therefore,

$$A(x) = \prod_{k=1}^{\infty} (1 + x^k) = \prod_{k=1}^{\infty} \frac{1 - x^{2k}}{1 - x^k} = \prod_{k \text{ odd}} \frac{1}{1 - x^k}.$$

The last equality is due to terms of the form  $1 - x^\ell$  in the denominator for  $\ell$  even cancelling with the term of the form  $1 - x^{2 \cdot \frac{\ell}{2}}$  in the numerator. However, the last product may be represented as

$$\prod_{k \text{ odd}} (1 + x^k + x^{2k} + \dots).$$

This representation tells us that we can make partitions out of any number of odd integers, where the term  $x^{ak}$  represents using  $k$  a total of  $a$  times in the partitions. This means that  $A(x)$  is the generating function for  $q(n)$  in addition to  $p_{\text{odd}}$ , implying they are equal.  $\square$

**Problem 4.** Prove that, for every  $n \in \mathbb{N}$ , the following identity holds:

$$\prod_{i=1}^n (1 + xq^i) = \sum_{k=0}^n \binom{n}{k} q^{\binom{k+1}{2}} x^k.$$

*Proof.* We claim that both sides count the same event. Consider any term  $c_{a,b} x^a q^b$  from the expansion of the left hand side. There must be exactly  $a$  terms of the form  $xq^i$  to produce the exponent  $x^a$  and further, the sum of the exponents of all the  $q^i$  terms must be  $b$ . Additionally, all  $q^i$  are distinct. Therefore,  $c_{a,b}$  represents the number of partitions of  $b$  into  $a$  distinct parts, each of which is at most  $n$ . We wish to show the same is true of the right hand side.

Let  $p(i, j, k)$  represent the number of partitions of  $k$  into at most  $j$  parts, each of which is at most  $i$ . From lecture,  $\sum_{k \geq 0} p(i, j, k) q^k = \binom{i+j}{j}_q$ . Plugging this into the right hand side gives

$$\sum_{k=0}^n x^k q^{\binom{k+1}{2}} \sum_{i \geq 0} p(n-k, k, i) q^i.$$

Fixing  $k$  and  $i$ , we obtain a term of the form  $p(n-k, k, i) x^k q^{i+\binom{k+1}{2}}$  for  $i \geq 0$ . Consider some partition  $p_1 + p_2 + \dots + p_j = i$  with  $p_1 \geq p_2 \geq \dots \geq p_j$  such that  $j \leq n$  and  $p_1 \leq n-k$ . If  $j < k$ , then let elements  $p_{j+1}, p_{j+2}, \dots, p_k$  all be equal to 0. Then, take  $p'_i = p_i + i$ , and so

$$\sum_{m=1}^k p'_m = \sum_{m=1}^k (p_m + m) = \binom{k+1}{2} + i,$$

meaning that the  $p'_m$  form a partition of  $i + \binom{k+1}{2}$  into  $k$  distinct elements. Further, the largest that  $p'_1$  can be is  $n-k+k=n$ , meaning that the  $p'$  form a unique partition that represents splitting  $\binom{k+1}{2} + i$  into  $k$  distinct parts of at most  $n$ , for any  $i$  and  $k$ . This process is reversible, meaning that  $c_{k, \binom{k+1}{2}+i}$  is the same as  $p(n-k, k, i)$ , and so the two sides represent the same function.  $\square$

**Problem 5.** For  $n \in \mathbb{N}$ , what number of cycles do we expect when we take at random a permutation in  $S_n$ ?

*Proof.* Let  $X_k$  denote the random variable equal to the number of cycles of length  $k$  in a randomly chosen permutation in  $S_n$ . The sum  $\sum_{k=1}^n X_k$  denotes the total number of cycles in the chosen permutation. Then, from linearity of expectation,

$$\mathbb{E} \left[ \sum_{k=1}^n X_k \right] = \sum_{k=1}^n \mathbb{E}[X_k].$$

Now, we wish to count the number of cycles of length  $k$  across all  $n!$  permutations. There are  $\binom{n}{k}$  ways to pick  $k$  elements for a cycle, and  $(k-1)!$  distinct ways to arrange the elements in a length  $k$  cycle. Therefore, there are a total of  $\binom{n}{k}(k-1)!(n-k)! = \frac{n!}{k}$  cycles of length  $k$  across all permutations in  $S_n$ . Thus,  $\mathbb{E}[X_k] = \frac{\frac{n!}{k}}{n!} = \frac{1}{k}$ . This gives an answer of

$$\sum_{k=1}^n \mathbb{E}[X_k] = \sum_{k=1}^n \frac{1}{k} = H_n,$$

where  $H_n$  is the  $n$ th Harmonic number.  $\square$

**Problem 6.** Let  $I(n, j)$  be the number of permutations in  $S_n$  with no cycles of length greater than  $j$ . Prove the following recurrence identity:

$$I(n+1, j) = \sum_{k=n-j+1}^n (n)_{n-k} I(k, j),$$

where  $(n)_k := n(n-1)\dots(n-k+1)$ .

*Proof.* Let  $T_{n,j}$  be the set of permutations in  $S_n$  with no cycles of length greater than  $j$ . We claim that the number of permutations  $\sigma \in T_{n+1,j}$  where  $n+1$  is in a cycle of length  $\ell \leq j$  is  $(n)_{\ell-1} I(n-\ell+1, j)$ . To get this, note that there are  $\binom{n}{\ell-1}$  ways to pick the remaining  $\ell-1$  elements in the same cycle as  $n+1$ , and  $(\ell-1)!$  ways to arrange these elements within the cycle. Further, there are  $I((n+1)-\ell, j)$  ways to permute the remaining  $n+1-\ell$  elements into cycles of length at most  $j$ . Combining this, there are

$$\binom{n}{\ell-1} (\ell-1)! I(n+1-\ell, j) = n(n-1)(n-2)\dots(n-\ell+2) I(n+1-\ell, j) = (n)_{\ell-1} I(n+1-\ell, j)$$

total permutations with  $n+1$  in a cycle of length  $\ell$ . Summing this over all possible  $\ell$  will give every potential permutation in  $T_{n,j}$ , thus we obtain

$$I(n+1, j) = \sum_{\ell=1}^j (n)_{\ell-1} I(n+1-\ell, j) = \sum_{k=n-j+1}^n (n)_{n-k} I(k, j),$$

where the last equality comes from a change of bounds.  $\square$

**Problem 7.** For  $n \in \mathbb{N}$  with  $n \geq 2$ , let  $a(n, k)$  be the number of permutations in  $S_n$  with  $k$  cycles in which the entries 1 and 2 are in the same cycle. Prove the following identity:

$$\sum_{k=1}^n a(n, k) x^k = x(x+2)\dots(x+n-1).$$

*Proof.* Let  $c(n, k)$  denote the number of permutations in  $S_n$  that contain exactly  $k$  cycles. We claim that  $c(n, k) = a(n, k) + a(n, k-1)$ . In other words, it is sufficient to find a bijection between the number of permutations in  $S_n$  with exactly  $k-1$  cycles that contain both 1 and 2 in a single cycle with those permutations in  $S_n$  that have  $k$  cycles with 1 and 2 in distinct cycles. Let  $X_k$  be the set of permutations with  $k$  cycles where 1 and 2 are in distinct cycles and  $Y_k$  be the set of permutations with  $k$  cycles where 1 and 2

are in the same cycle. Define  $f : Y_{k-1} \rightarrow X_k$  as follows. Given a  $y \in Y_{k-1}$ , let the cycle 1 and 2 are in be  $(1, a_1, \dots, a_p, 2, b_1, \dots, b_q)$ . This cycle can have a unique split at  $a_p$ , the element just before 2 in the cycle and also after  $b_q$  to give us two distinct cycles  $(1, a_1, \dots, a_p)$  and  $(2, b_1, \dots, b_q)$ . Further, this new permutation is an element of  $X_k$ , thus every element in  $Y_{k-1}$  has a unique mapping to  $Y_k$  under  $f$ .

For the inverse, it is not hard to see that we can take the two distinct cycles 1 and 2 would be in, namely  $(1, a_1, \dots, a_p)$  and  $(2, b_1, \dots, b_q)$ , and merge them in the same way to get the cycle  $(1, a_1, \dots, a_p, 2, b_1, \dots, b_q)$ , thus meaning that  $f$  has an inverse map. As such,  $f$  is a bijective function and  $c(n, k) = a(n, k) + a(n, k-1)$ .

It was shown in lecture that

$$\sum_{k=1}^n c(n, k)x^k = x(x+1)\dots(x+n-1).$$

Using this, we can break apart  $c(n, k)$  to get the following:

$$\begin{aligned} \sum_{k=1}^n c(n, k)x^k &= c(n, 1)x + \sum_{k=2}^n c(n, k)x^k = a(n, 1)x + \sum_{k=2}^n (a(n, k) + a(n, k-1))x^k = \\ &= \sum_{k=1}^n a(n, k)x^k + \sum_{k=2}^n a(n, k-1)x^k = \left( \sum_{k=1}^n a(n, k)x^k \right) (x+1). \end{aligned}$$

With the fact from lecture, we find that

$$\sum_{k=1}^n a(n, k)x^k = x(x+2)(x+3)\dots(x+n-1).$$

□

**Problem 8.** *Each person in a group of  $n$  friends checks a hat and an umbrella when entering a restaurant. When they leave, each of them is given back at random a hat and an umbrella (from the same set of articles they had already checked upon entrance). In how many ways can none of the friends get back her/his own hat or umbrella?*

*Proof.* For  $i \in [n]$ , let  $A_i$  denote the set of events where person  $i$  gets both their hat and umbrella back. Using Sieve, we can count the total number of ways at least 1 person gets both their own hat and umbrella back. This gives

$$\left| \bigcup_{i=1}^n A_i \right| = \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} \left| \bigcap_{i \in I, |I|=k, I \subseteq [n]} A_i \right|.$$

The  $\binom{n}{k}$  coefficient comes from there being  $\binom{n}{k}$  sets of size  $k$  for which we can take the intersection of for Sieve. Further, the intersection represents  $k$  people getting their articles back, and there are  $(n-k)!$  ways to give back the remaining hats and  $(n-k)!$  ways to give back the remaining umbrellas. Therefore, this quantity is

$$\sum_{k=1}^n (-1)^{k+1} \binom{n}{k} (n-k)!^2 = \sum_{k=1}^n (-1)^{k+1} \frac{n!(n-k)!}{k!}.$$

We want the complement of this expression, so we have to subtract this quantity from the total number of ways the hats and umbrellas can be given back, which is  $(n!)^2$ . Thus, the answer is

$$(n!)^2 - \sum_{k=1}^n (-1)^{k+1} \frac{n!(n-k)!}{k!} = \sum_{k=0}^n (-1)^k \frac{n!(n-k)!}{k!} = n! \sum_{k=1}^n (-1)^k \frac{(n-k)!}{k!}. \quad \square$$